skip to main content


Search for: All records

Creators/Authors contains: "Hourdez, Stéphane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères & Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères & Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe , utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V “Nautilus”); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V “Western Flyer”) and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V “Melville”). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch & Rouse, sp. nov. , type locality Pescadero Basin in the Gulf of California, Mexico (R/V “Western Flyer”); Peinaleopolynoe elvisi Hatch & Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch & Rouse, sp. nov. , both with a type locality in Monterey Canyon off California (R/V “Western Flyer”) and Peinaleopolynoe mineoi Hatch & Rouse, sp. nov. from Costa Rica methane seeps (R/V “Falkor”). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12–15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe , Branchinotogluma , Bathykurila , Branchiplicatus , Lepidonotopodium , Levensteiniella Pettibone, 1985, Thermopolynoe , and Peinaleopolynoe . 
    more » « less
  2. Abstract Motivation

    Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for theFunctionalDiversity ofvents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI.

    Main types of variable contained

    Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided.

    Spatial location and grain

    Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres.

    Time period and grain

    sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years.

    Major taxa and level of measurement

    Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress.

    Software format

    .csv and MS Excel (.xlsx).

     
    more » « less